

Tone expression in television applications

Masayuki SUGAWARA NHK

Background

- Everybody talks about high dynamic range (HDR).
- But, there's a lot of disagreement as to what that actually is.
- Members in ITU-R has been trying to define dynamic range by using bit-depth, OETF/EOTF, scene/screen luminance, peak brightness, average brightness, black level,,
- But, there's no agreed definition yet.
- In this presentation: some perspectives are given from television application point of view.

Tokyo, Sunday Feb. 16 2014

Tone reproduction to be improved in current TV applications

- 1. Loss of detail in high-light portion due to level compression
- 2. Decrease in color saturation in high luminance portion
- 3. Difficulty in the reproduction of differently illuminated scenes, e.g., sun-lit and sun-shade
- 4. Tone jump (banding) in dark scene (8 bit delivery)
- 5. Loss of detail in dark portion at end-user in brightsurrounding viewing environment

Items 1 to 3 will be discussed.

Which part we are talking about?

- dynamic range hierarchy in TV -

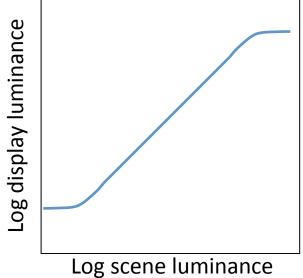
Tone mapping

Usually unwritten but common practice

Signal format/Reference monitor characteristics Bit depth, OETF/EOTF

Capture device Saturation, noise floor

Display device Max, min luminance



Display-referred

Operational practice (OP)

System standard (SS)

Device performance (DP)

Scene-referred

Proposed general requirements for television broadcast applications

- Significant improvement in user visual experience in terms of tone reproduction
- Reasonable cost
- Acceptable change from current practice at production and presentation ends
- Satisfactory compatibility with current practices

Problem-solution matrix

Solution	Tier	1: clip in high- light	2: drop in color saturation	3: differently illuminated scenes
A: Higher brightness display	DP	**	-	*
B: Deeper bit depth	SS	*	-	*
C: More efficient quantization	SS	*	-	*
D: Increased "head room"	ОР	***	***	**
E: Improved tone mapping	ОР	**	**	***

DP: Display performance

SS: System standard

OP: Operational practice

*** : required

** : applicable

* : may be helpful

- : not related

A: Higher brightness display

D: Increased "head room"

- Combination of D & A seems major approach.
- Display technologies already provide several hundred cd/m², and much more is possible.
- Major change in production practice
 - Will mastering on a higher brightness monitor automatically make HDR programs easily exchangeable?
 Or do we need standardized operational practice?
 - Can HDR master be automatically tone-mapped for current/legacy displays?
- Major change in end-users' practice
 - How to adjust the display for various viewing environments?
 - Current practice: CONTRAST and BRIGHTNESS knobs controlled by user
 - Are there any point of view other than "wow-factor"?
 - · Comfortableness, burden on eyes
- How much head room? and How to implement are the real issues.

Discussion

B: Deeper bit depth

C: More efficient quantization

- Secondary issue that may be derived from solution D: Increased "head room".
- Solution B: Deeper bit depth
 - Small change from current practice
 - Rec. BT.2020 already specifies 12 bit.
- Solution C: More efficient quantization
 - Large change from current practice is not desirable.
 - Processing and monitoring with encoded signals in program production and post-production
 - Quality and cost should be studied in the delivery with compression technology.

Discussion

E: improved tone mapping

- We want to extend scene dynamic range.
- Increase display maximum luminance as well?
- "HDR" for still picture application is to compress the dynamic range into conventional displays.
 - Space-variant approach, e.g., Retinex
 - Similar approach is applicable to television application?
 - Technical feasibility not yet proven.
 - Difference between still and motion media?
 - Difference between reflective and self-emitting display?

HDR in still picture applications

iPhone HDR off

iPhone HDR on

Conclusion

- Tone reproduction to be improved in current TV applications
- Main objective is to enlarge reproducible scene range.
 - Q1: Display's physical luminance range as well?
- Increase in "head room" is Major solution
 - Q2: to what extent?
 - Q3: how to implement?
- Q4: What do you think about improved tone-mapping as an alternative approach?
- We must find a solution that fits the requirements.

Thank you!

sugawara.m-fq@nhk.or.jp

Appendix