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Wide-gamut image capture  7

 

Color gamut

 

 refers to the range of colors that can be reproduced by an 
imaging system. The definition of gamut is quite clear for displays and 
for hard-copy printing. Color image science experts disagree, however, 
on the definition – or even applicability of the concept – of gamut for 
cameras. I argue that there is no such concept as “capture gamut.” At 
the conclusion of this note I’ll outline my reasoning – but first we have 
to take a tour through camera signal processing. 

 

Poynton, Charles

 

 (2012), 

 

Digital 
Video and HD Algorithms and 
Interfaces,

 

 Second edition 
(Waltham, Mass.: Elsevier/Morgan 
Kaufmann). 

 

I assume you’re fairly familiar with the principles of color science, 
and with its application in video, topics discussed in chapters 21 and 
22 of my book (“

 

DVAI

 

”). 

 

Introduction 

 

RGB+W displays do 

 

not

 

 have 
additive primaries. 

 

Typical electronic displays – historical displays such as CRT or PDP, or 
modern displays such as LCD, OLED, or DMD displays – have additive 

 

RGB

 

 primaries. Owing to the three types of cone photoreceptors in 
normal human vision, three well-chosen primaries are necessary and 
sufficient to achieve metameric color matching for a wide range of 
colors. 

 

At the time of writing, nearly all of 
the multispectral cameras described 
in the research literature, and all of 
the hyperspectral cameras, involve 
changing filters in time sequence: 
Such cameras are unsuitable for 
capturing moving subjects. The 
exception is the realtime 6-channel 
camera described by NHK. 

 

Multispectral

 

 refers to a capture device having a few, or perhaps 
several, spectral components beyond the three that are necessary for 
trichromatic capture; 

 

multiprimary

 

 ordinarily refers to a display device 
having more then 3 components. 

 

Hyperspectral

 

 refers to a device 
having more than a handful of spectral components. There is no 
accepted definition of how many components constitute multispec-
tral, multiprimary, or hyperspectral. In my view, a multispectral system 
has between 4 and 8 spectral components, and a hyperspectral system 
has 9 or more. Multispectral displays have been demonstrated, but 
none are commercially deployed. Experimental multispectral and 
hyperspectral cameras have been demonstrated, but as I write, none 
are used in commercial applications. In certain highly specialized 
applications such as the preservation or reproduction of fine art, multi-
spectral and hyperspectral techniques enable capture of estimated 
spectral reflectance. I argue, though, that multispectral techniques are 
not necessary to capture wide-gamut color. 

Subtractive (CMY or CMYK) color is used in color photography and 
motion pictures, and in various sorts of commercial and consumer 
printing. Subtractive reproduction is more complicated than additive, 
owing to the nonlinearity of color mixture. Although it is theoretically 
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possible to form color in an electronic display using the subtractive 
mechanism, no such display has been commercialized. In the 
remainder of this note I will address just 3-component additive 
displays. 

Although individual color-normal observers have different spectral 
sensitivities, for purposes of color engineering the CIE has adopted 
a statistically-derived 

 

standard observer

 

 that is the basis for measure-
ment and characterization of color. The standard observer is defined in 
terms of three weighting functions termed 

 

color matching functions

 

 
(CMFs). Measuring color involves forming three weighted integrals of 
the spectral power distribution (SPD) of the light – one for each CMF 
curve. The three components that result are termed 

 

tristimulus values,

 

 
or simply 

 

tristimuli.

 

 The CIE standard tristimuli are 

 

XYZ

 

 components, 
associated with 

 

x

 

_

 

, 

 

y

 

_

 

, and 

 

z

 

_

 

 spectral responsivities; other components 
(such as various flavours of 

 

RGB

 

) can be obtained from 

 

XYZ

 

 through 
a 3

 

×

 

3 matrix multiplication. 
It is sufficient for most color image system engineering purposes to 

express the color matching functions of the standard observer at 
31 wavelengths, from 400 nm to 700 nm in steps of 10 nm, ordinarily 
represented in a 31-by-3 (tall) matrix. Tristimuli are computed by 
taking the matrix product of a 31-element column vector (containing 
an SPD) placed to the right of the transpose of the CMF matrix. The 
matrix product 

 

projects

 

– or in common language, collapses – the 31 
dimensions of spectral space into the 3 dimensions of color. 

 

Metamerism 

 

The mapping of spectra to tristimuli is many-to-one. All SPDs that 
produce the same tristimuli are termed 

 

metamers.

 

 The matching of 
color of any pair of these spectra is termed a

 

metameric match

 

 (as 
opposed to a spectral match). In some applications it is useful to asso-
ciate a set of three tristimulus values with a preferred or distinguished 
SPD called the 

 

fundamental metamer;

 

 other SPDs are then ordinary 
metamers. Any SPD can be mapped into its fundamental metamer 
through matrix multiplication with Cohen and Kappauf’s 

 

matrix 

 

R

 

,

 

 
described in their 1985 paper. Matrix 

 

R

 

 has rank 3; for 31-component 
spectral sampling, it is 31

 

×

 

31. Matrix 

 

R

 

 incorporates an illuminant. 
Metamerism is both good and bad news. The good news is that 

three components suffice to reproduce color of light on its way to the 
eye. However, the colors of reflective objects or media involve illumi-
nation. When we see an object, the spectral power distribution of the 
illuminant interacts wavelength-by-wavelength with the spectral 
reflectance of the object. The extent to which the spectral character of 
the ambient light is uncontrolled leads to the bad news of 
metamerism: Colors can and do change depending upon the spectral 
composition of illumination. 

Emissive displays generate light without depending upon ambient 
illumination, so they do not suffer from metamerism. However, 
metamerism affects reflective displays, and it affects image capture. 

To represent the color of an object with anything less than a spec-
tral representation (of, say, 31 components), the dependence upon 
illumination is implicated. There are many different illuminants. We 
can use colorimetry to characterize the 

 

color

 

 of an illuminant, but any 

Absolute luminance carries units of 
cd·m-2; it is not a tristimulus value. 
Relative luminance has no units, 
and can be considered to be a dis-
tinguished tristimulus value that is 
meaningful on its own. Apart from 
relative luminance, tristimuli come 
in sets of three as the word 
suggests, and have no units. 

Cohen, Jozef B., and Kappauf, 
William E., “Color mixture and 
fundamental metamers: Theory, 
algebra, geometry, application,” in 
Am. Journal of Psychology, 98 (2): 
171–259 (Summer, 1985). 
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representation in just 3 components cannot adequately capture spec-
tral information: No 3-component representation can accurately 
capture the interaction between the illuminant and an arbitrary object. 

In photographic printing, illuminant SPDs and the spectral 
reflectances or spectral transmittances of photographic material are 
well-controlled. Providing that the photographic media has three 
colorants (as is nearly always the case), three components suffice to 
represent captured color. Color reproduction could be characterized in 
terms of tristimuli related to the spectral sensitivities of human vision. 
However, for process control reasons it is usual to characterize photo-
graphic reproduction using 

 

optical density

 

 quantities that are directly 
related to the physics of reproduction. Description of color in this 
manner is called 

 

densitometric

 

 (as opposed to 

 

colorimetric

 

). 
Having established the context for a discussion of gamut, I will 

briefly outline cameras, then proceed to the complex issue of camera 
metamerism. 

 

Cameras 

 

Foveon’s X3 technology does not 
use colour filters; instead, wave-
lengths of light are separated by 
their absorbtion depth in a three-
layer photosite. 

 

Color cameras filter incoming light into spectral bands, then direct 
filtered light onto sensors. Typically the sensors are identical for all 
channels; color response is dominated by the filter characteristics. In 
nearly all commercial cameras, three bands are separated. (Experi-
mental cameras having up to six bands have been demonstrated.) Two 
classes of camera are distinguished according to how they accomplish 
filtering: beamsplitter cameras and mosaic cameras. 
 • A

 

beamsplitter camera 

 

uses dichroic filters in the optical path, inter-
posed between the lens and a set of sensors, to separate a single 
beam of light into three constituent wavelength bands. An image for 
each wavelength band is incident upon each sensor. Dichroic filters are 
not absorptive: No light is lost in color separation. 

 

Sony commercialized a consumer 
digital still camera (DSC-F828) 
having a mosaic sensor with four 
channels: the usual red, green, and 
blue, and a fourth “emerald” color 
(RGB+E). The fourth channel is 
claimed to improve color perfor-
mance; however, I have found no 
published technical data that 
supports the claim. 

 

 • A

 

mosaic camera 

 

uses a single sensor. A few different color filter 
materials are deposited onto neighboring sensor elements in a spa-
tially periodic pattern. A scheme invented in 1976 by Kodak 
researcher Bruce Bayer remains the most common pattern today: The 

 

Bayer

 

 pattern tiles R-G-G-B filters in a 2

 

×

 

2 pattern. Mosaic sensors 
confound spatial detail and color; subsequent to capture, a “demosa-
icking” process is necessary. 

Sensor spectral sensitivity and spectral transmittance of the lens and 
other optical components affect overall spectral sensitivity of a color 
camera, but the color separation mechanism dominates. 

 

Camera metamerism 

 

Human vision has color-matching functions (CMFs); an electronic color 
camera has what I call 

 

spectral responsivity functions

 

 (SRFs). 

 

What I call the 

 

Maxwell-Ives criterion

 

 
is sometimes called 

 

Luther-Ives,

 

 or 
just 

 

Luther.

 

 In my view, Maxwell and 
Ives mainly deserve the credit. 

 

A camera having SRFs identical to the CIE CMFs (or linear combina-
tions of them) is said to meet the 

 

Maxwell-Ives criterion.

 

 A camera 
having 

 

x

 

_

 

, 

 

y

 

_

 

, and 

 

z

 

_

 

 spectral responsivities identical to the standard 
observer would deliver 

 

XYZ

 

 components, and could be called an 

 

XYZ

 

 
camera – or could be called an imaging colorimeter. 
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Ejaz, Tahseen

 

, et al., “Development 
of a Camera System for the Acquisi-
tion of High-Fidelity Colors,” in 

 

IEICE 
Trans. Electron.

 

 E89-C (10): 1441–
1447 (2006). 

 

Life with a perfectly colorimetric 

 

XYZ 

 

camera would be simple. In 
fact, experimental colorimetric cameras have been described and 
demonstrated – see the paper by Ejaz and his colleagues. 

However, there are good engineering reasons – such as optimizing 
signal-to-noise ratio, or allowing reasonably inexpensive optical 
filters – to use sensitivities different from the CIE CMFs. The signal-to-
noise issue derives from the large degree of spectral overlap between 
the L and M photoreceptors of vision. Reconstruction of additive 

 

RGB

 

 
primary components from highly-overlapped sensor SRFs requires 
large coefficients in the required 3

 

×

 

3 linear matrix, as I explain in 

 

DVAI

 

 (in the section 

 

Noise due to matrixing, 

 

on page 253). The large 
matrix coefficients incur a significant noise penalty. 

Generally speaking, color images are best captured with sensors 
having spectral responsivities that peak at about 600, 540, and 
450 nm – loosely, red, green, and blue – and having bandwidths of 
about 60, 50, and 40 nm respectively. Details are found in 
Chapters 25 and 26 of 

 

DVAI

 

. 
To the extent that camera spectral sensitivities depart from the CIE 

CMFs, the camera will “see” colors differently than human vision: 
A pair of SPDs that we see as two different colors might produce iden-
tical sets of camera responses; conversely, a pair of SPDs that we see 
as identical might produce distinct sets of camera responses. Depar-
ture of the camera response from vision’s response, as estimated by 
CIE colorimetry, is known as 

 

camera metamerism.

 

 Camera metamerism 
is inherent in any system that departs from the CIE CMFs – and prac-
tical systems do depart, so metamerism will almost certainly occur. 
Where in color space the metamerism occurs, and its effect, is not 
obvious; these are matters to be investigated. 

 

Scanner metamerism

 

 relates to a similar phenomenon in scanners. 
Because objects being scanned are often color reproductions that have 
only three colorants, metamerism is easier to avoid or correct than it is 
for arbitrary scenes. I won’t discuss scanner metamerism any further. 

In my view, the practical issue of camera metamerism is not yet well 
understood. Camera gamut also deserves discussion, but in my view it 
is a mistake to confound camera metamerism and camera gamut. For 
me, the distinction between these topics is that metamerism takes 
place in spectral domain – call it “31-space” – and gamut is a phenom-
enon of 3-space. 

 

Optimal colors 

 

MacAdam, David L.

 

, “Maximum 
Visual Efficiency of Colored Mate-
rials,” in 

 

J. Opt. Soc. Am.

 

 15: 361–
367 (Nov. 1935); reprinted in 

 

MacAdam, David L.

 

 (ed.), 

 

Selected 
Papers on Colorimetry –

 

 

 

Fundamen-
tals 

 

(Bellingham, Wash.: SPIE Press, 
1993). 

 

The 

 

optimal colors,

 

 first investigated by David MacAdam in 1935, 
comprise a set of artificial spectral reflectances that produce as wide 
a gamut as is possible from a diffusely reflecting surface. The optimal 
colors form a surface bounding the 

 

object-color solid

 

 (OCS) that is 
defined as the set of all possible ideal diffuse spectral reflectances. The 
optimal colors are defined without reference to any illuminant; they 
are more accurately called optimal 

 

reflectances

 

. (When illuminated, 
they become optimal colors.) Although optimal reflectances are 
defined without reference to any illuminant, it is common to discuss 
them in the context of the equi-energy illuminant (CIE Illuminant E). 

 

For 

 

n

 

 wavelength samples, there are 

 

1

 

/

 

2

 

·

 

n

 

·(

 

n

 

+1) type 1 reflectances 
and 

 

1

 

/

 

2

 

·

 

n

 

·(

 

n

 

+1) type 2 reflectances. 

 

MacAdam proved that optimal colors have just two types of spec-
tral reflectance, both limited to zero reflectance or unit reflectance at 
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each wavelength and having at most two transitions between those 
values across the visible spectrum. Type 1 spectra are “mountain” 
shaped, having zero reflectance except for a single spectral ridge 
between 

 

λ

 

1

 

 and λ2. Type 2 spectra are “valley” shaped, having unity 
reflectance except for a single notch of zero reflectance between λ1 
and λ2. 

Martínez-Verdú, Francisco, 
et al., “Calculation of the 
Optimal Colors of Linear Input 
Devices,” in Proceedings of 
CGIV 2006 (IS&T, Leeds, U.K., 
June, 2006), 345–349. 

For reasons that I haven’t 
determined, Verdú uses 1734 
reflectances instead of the 
1722 that I would expect. 

Figure 7.1, taken from a paper by Martínez-Verdú and his 
colleagues, shows six optimal spectral reflectance curves, all at lumi-
nance factor of 20%. Verdú uses 41 components 10 nm intervals from 
380 nm to 780 nm. 

Optimal reflectances are never encountered in practice: Real object 
surface reflectances never exhibit transitions from zero to unity in an 
infinitesimal wavelength interval, and never have perfect absorbance 
or perfect reflectance. Nonetheless, the optimal reflectances provide 
a useful analytical tool to explore gamut limits. Significantly, the 
optimal reflectances have no metamers, so they offer a good way to 
explore capture gamut without introducing the complications of 
metamerism. 

Numerosity 

To estimate the impact of metamerism on the operation of real 
cameras capturing real scenes, it’s important to know something 
about the frequency of metamerism in natural and synthetic scenes. 
How many colors, and how many metamers, are encountered? 

In colour science, monochromatic 
refers to a colour stimulus having 
a single (usually narrow) spec-
tral peak. In computer graphics, 
monochromatic refers to a grey tone 
(i.e., having no hue), what a colour 
scientist would call achromatic. In 
this chapter I use the term mono-
chromatic in its colour science sense. 

I have mentioned that MacAdam’s optimal colors are unrealistic, 
because infinitesimally narrow transitions between full reflectance and 
full absorbance don’t occur in nature. 

For 31-component spectral sampling, there are 231 – or about two 
billlion – spectral combinations of distinct monochromatic sources, 
but only 32 times 31 – or 992 – optimal spectral samples. Of the two 
billion samples, only about a thousand lie on the gamut boundary; the 
remainder lie within the boundary, and nearly all lie well within. 

Stiles, Walter S. and Wyszecki, 
Günter W., “Counting metameric 
object colors,” in J. Opt. Soc. Am. 
52 (3): 313–328 (Mar. 1962). 

In 1962, Stiles and Wyszecki published a paper describing a study 
that they performed to analyze metamers using Monte Carlo tech-
niques, producing a 3-D histogram. Figure 7.2 reproduces a histogram 
from that paper. Stiles and Wyszecki conclude that metamers are far 
more likely to be located within the gamut boundary than near the 

 

Figure 7.1 Optimal colors 
have either Type 1 spectral 
reflectances (at the top) or 
Type 2 spectral reflectance 
(at the bottom). The 
optimal colors shown here 
have the same reflectance 
factor of 20%. These 
figures are adapted from 
Francisco Martínez-Verdú 
and his colleagues. 
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boundary. (As I mentioned earlier, colours on the gamut boundary – 
the optimal colours – cannot be metameric.) 

Stiles, Walter S., et al., “Counting 
metameric object-color stimuli using 
frequency-limited spectral reflec-
tance functions,” in J. Opt. Soc. Am. 
67 (6): 779–784 (June 1977). 

Stiles, Wyszecki, and Ohta investigated metamers with spectral 
constraints making them less “spiky.” Their 1977 paper explains use of 
Fourier techniques to explore non-spiky metamers. These papers, and 
papers by several researchers following them, confirm that high 
degrees of metamerism produce tristimuli that lie well within the 
gamut boundary. 

“Spikiness” can arise not only from spiky reflectance but also from 
spiky illumination: Mercury-vapor and sodium vapor lamps, for 
example, have rapid transitions in their SPD curves. However, such 
lamps are useless in high quality imaging. Many fluorescent lamps are 
somewhat spiky, but a professional would never except under excep-
tional circumstances capture an image lit by fluorescent lamps. CRT 
red phosphors have notoriously spiky SPDs, owing to the bicompo-
nent rare-earth phosphor composition. Although the spiky character-
istic leads to some difficulties in measurement, CRTs are not used as 
sources of illumination, so we can discount them as light sources. 
I conclude that spiky sources do not present serious problems in prac-
tice. 

Pointer’s colors 
Pointer, Michael R., “The gamut of 
real surface colors,” in Color Research 
and Application 5 (3): 145–155 (Fall, 
1980). 

Mike Pointer, working at Kodak Research in the U.K., collected about 
two thousand colorimetric samples of real surface reflectances. He 
published a paper summarizing the CIE L*u*v* and CIE L*a*b* coordi-
nates of colors at the boundary of his set. Pointer plotted his data in 
a set of 2-D graphs and plots; Figure 7.3 is Pointer’s own representa-
tion of gamut as “lightness contours” in CIE [u’, v’] chromaticity coor-
dinates. Figure 7.4 shows my 3-D representation of Pointer’s gamut in 
CIE [L*, u*, v*] coordinates. The gamut of real surface colors is best 
described as a blob. Many of Pointer’s colors are outside of the capa-

Figure 7.2 Stiles’ and 
Wyszecki’s histogram 
counts metamers produced 
by the Monte Carlo tech-
nique. This figure shows 
a small cube of XYZ space 
in a 2-D slice at luminance 
(Y) values between 0.50 
and 0.55. The number in 
each cell shows the count 
of metamers lying within 
the corresponding tristim-
ulus value boundaries. It is 
evident that most 
metamers lie well within 
the gamut boundary. 
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bility of BT.709/sRGB. It is a goal of wide color gamut systems to 
capture and reproduce many of these colors. 

Camera capture analysis gamut 

Some researchers argue that gamut is limited when a change in the 
optical stimulus produces no change in sensor output. I disagree with 
this view. We already have perfectly good words saturation (referring 
to the sensor itself) and clipping (referring to signal processing) that 
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Figure 7.3 Pointer’s gamut in 2-D CIE u’v’ coordinates is 
plotted as lightness (L*) contours at the indicated levels. 

Figure 7.4 Pointer’s 
gamut in 3-D, here in 
CIE L*u*v* coordinates, 
forms what is best 
described as a blob. 
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express absence of signal change to a changing stimulus. I argue that it 
is a mistake to confound gamut with saturation and clipping. 

Centen, Peter, “How Wide Gamut 
Is A Broadcast Camera,” in Proc. 
146th SMPTE Tech. Conf. (Pasadena, 
Calif., Oct. 2004). 

Peter Centen, an accomplished HDTV sensor and camera designer, 
has argued that gamut limitation in a camera is not a function of the 
sensor spectral characteristics, but of signal processing alone – and 
more specifically, a function of clipping. I agree with his view. 

www.cis.rit.edu/mcsl Munsell Color Science Laboratory has, on its web site, a column 
“Ask a color scientist!’’ One of the answers states, quite unequivo-
cally, “there is no such thing as a camera, or scanner, gamut.” 

Video cameras, digital still cameras, and digital cinema cameras 
incorporate signal processing elements to adapt the spectral sensitivi-
ties of the sensor to the RGB primaries of the assumed display device. 
The usual signal processing element is a 3×3 “linear” matrix, so named 
because its action takes place in the linear-light domain, prior to 
gamma correction. (Some proponents of digital cinema recommend 
image capture with the matrix “switched off.” I will address that view 
later.) 

Color cameras deliver three components, and obviously those three 
components are interpreted by the display as representing primaries of 
known chromaticities. What is their relationship with the camera 
signals? Does the camera have primaries? The answers to these ques-
tions are not unanimously agreed upon by color scientists: “Experts 
disagree!” In the following sections, I will give my interpretation. 

Interpretation of raw camera RGB 
The ColorChecker has had several 
corporate owners: first Macbeth, 
then GretagMacbeth, now X-Rite. 

If you pay no attention to color science, and simply connect 
a camera’s output signals to a monitor – or to the front end of a post-
production chain – you will get colors. However, the colors displayed 
will generally not be very close to those of the scene. Figure 7.5 shows 
the chromaticities of the 24 patches of the ColorChecker as measured 
by a colorimeter. When imaged by a typical digital camera, and the 
uncorrected R, G, and B values are treated as BT.709 values, the chro-
maticities of Figure 7.6 result. The most obvious deficiency is that the 
uncorrected device values exhibit a loss of color saturation. The loss of 
saturation occurs mainly because negative sensitivities at certain 
wavelengths would be required to implement an “ideal” sensor for the 
BT.709 display primaries. 

Negative lobes 

The necessity of “negative lobes” is explained in the passages on 
pages 240 through 243 of DVAI, and in the accompanying 6-frame 
“storyboard” set of graphs and captions on pages 244 through 249. I’ll 
summarize the argument in the remainder of this section. 

If capture was performed with the CIE x
_
(λ), y

_
(λ), and z

_
(λ) color 

matching functions (CMFs), then all colors would be captured, and all 
colors would be represented in nonnegative XYZ values. However, 
direct display of these XYZ values would require negative power at 
certain wavelengths at the display. In other words, direct display 
would require nonphysical (nonrealizable) SPDs at the display. 

For physical (realizable) SPDs at the display – say, for display using 
BT.709 primaries – it is relatively straightforward to work out the 
CMFs required to accurately capture suitable signals. Figure 7.7 shows 
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the ideal CMFs required for color signals to be captured for BT.709 
display. The transformed CMFs required at the camera (in this case, 
BT.709 CMFs) inevitably have negative lobes – obviously a problem 
for a 3-channel camera! 

0.10.0 0.2 0.3 0.4 0.5 0.6 0.7 x

y

0.2

0.0

0.4

0.6

0.8

Figure 7.5 Coordinates of 
ColorChecker patches are 
graphed on the CIE [x, y] chro-
maticity diagram. The horse-
shoe encloses all colors; the 
triangle encloses the colors that 
can be represented in video 
(BT.709) and in desktop 
computing (sRGB). The 
ColorChecker’s gamut approxi-
mately fills the [x, y] chroma-
ticity triangle of BT.709/sRGB. 

0.10.0 0.2 0.3 0.4 0.5 0.6 0.7

0.2

0.0

0.4

0.6

0.8

Figure 7.6 Uncorrected device 
RGB values of a typical digital 
camera are graphed here as if 
the camera produced RGB tris-
timulus values corresponding to 
the sRGB primaries. The most 
obvious problem is that the 
patches are reproduced desatu-
rated. Signal processing can be 
used to bring these values into 
closer agreement with the 
values obtained using the CIE 
Standard Observer. 
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The spectral responsivities of Figure 7.7 could be implemented by 
a 6-channel camera having a set of 3 channels sensitive to the posi-
tive lobes of each of the three CMFs augmented by a set of 3 channels 
sensitive to the negative lobes of each of the three CMFs. Signal 
components of the negative-going channels (or channel) could then 
be electrically negated and summed with the corresponding positive-
going signals. 

I speculate that the Sony RGB+E 
camera uses three SRFs similar to 
the dominant positive lobes of 
Figure 7.7, and a fourth SRF compa-
rable to the inversion of the large 
negative lobe of R709 (which lies in 
the cyan region of the spectrum). 

For BT.709’s CMFs, the green channel’s two negative lobes and the 
blue channel’s single negative lobe are quite low in amplitude. An 
engineer would be tempted to ignore these, and to ignore the small 
secondary positive lobe of red. That approach would lead to a four-
channel camera; a fraction of the fourth channel’s signal would be 
subtracted from the other 3. 

Four channels aren’t necessary; though: A comparable result is 
obtained by using just 3 channels having x

_
y
_
z
_
 sensitivities. A linear 3×3 

matrix (with some negative coefficients) combines the 3 components. 
If ideal x

_
y
_
z
_
 capture is performed – that is, if the sensor produced 

XYZ signals directly – the following 3×3 matrix would be required to 
encode into BT.709 RGB signals: 

Assuming uncorrelated compo-
nents, and one unit of noise on the 
right-hand side (in this case, XYZ), 
the noise in the result components 
is obtained as the root-mean-square 
of the rows of the matrix. 

Processing through a matrix such as that of Equation 7.1 has noise 
implications. The top left coefficient of that matrix, about 3.24, causes 
1 mV (or 1 code value) of noise in the X channel to be amplified into 
3.24 mV (or 3 code values) in the resulting R signal. The large overlap 
between the x

_
 and y

_
 sensitivities produces the large departure from an 

identity matrix. From a noise perspective, the optimum 3×3 matrix 
would be the identity matrix. 

Practical cameras don’t have x
_
y
_
z
_
 sensitivities. Instead, camera 

designers tune their color separation filters to depart from x
_
y
_
z
_
 sensitiv-

ities and tune their matrices for a balance between low noise, accept-
able metamerism, and reasonably accurate color. Users then live with 
the camera metamerism that results from failing to adhere to the 
Maxwell-Ives criterion. (The consequences of mismatch are rarely 
severe, in my opinion.) 
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Figure 7.7 CMFs for BT.709 
are the theoretically correct 
spectral responsivity (anal-
ysis) functions to produce 
RGB components for display 
with BT.709 primaries. Owing 
to their negative lobes, they 
are not directly realizable in 
a camera or a scanner. They 
can be realized through use of 
the the CIE XYZ color 
matching functions (or any 
nondegenerate linear transfor-
mation of them, or approxi-
mation of them) followed by 
signal processing involving 
a 3×3 matrix transform. 
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Optimum 3××××3 matrices 
You can call the collection of 
optical stimuli (or its synthetic 
equivalent) a training set. 

Construction of optimum 3×3 matrices is a combination of science, 
craft, and perhaps even art. At its simplest, you start with a colored 
optical stimulus such as the Macbeth chart. You measure the patches 
with a color measuring instrument, and use the parameters of the 
intended target colorspace (e.g., BT.709) to compute a set of ideal-
ized target RGB values. Then you use your camera to capture the stim-
ulus and obtain actual, native device values. Finally, you can construct 
a color transform that maps the native device values to the target RGB 
values according to some optimization criteria. For reasons that I’ll 
detail later, in my view the best transform is a 3×3 “linear matrix.” 

The simplest form of determining an optimum 3×3 matrix involves 
least-squares techniques. Given a matrix D whose columns contain 
sets of device RGB triples, and a matrix R containing the corre-
sponding ideal target RGB triples, a 3×3 matrix M maps from D to R: 

Pseudoinverse is also called Moore-
Penrose inverse or generalized 
inverse. Computing it involves 
a least-squares procedure. Pseudo-
inverse is built into matlab and 
Mathematica. 

The optimum matrix M is found by solving Equation 7.2, either 
directly, or by computing the matrix pseudoinverse of R, then 
computing the matrix product (by premultiplication, that is, left-multi-
plication) with D: 

Figure 7.8 shows spectral responsivity functions (SRFs) of a typical 
digital camera. For that camera, this matrix results: 

Eq 7.2R M D= u

Eq 7.3M D R= u +
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4Figure 7.8 Typical digital 
camera SRFs (spectral respon-
sivity functions) are graphed. 
The red, green, and blue chan-
nels are graphed in the corre-
sponding colors. Because 
these responses differ from the 
CIE standard observer, the 
native device values cannot be 
accurately interpreted as XYZ; 
because these SRFs differ from 
the BT.709 CMFs, the native 
device values cannot be accu-
rately interpreted as sRGB. 
However, with the application 
of a suitably optimized linear 
3×3 matrix, reasonably accu-
rate XYZ or BT.709 color infor-
mation can be estimated. Here 
the IR cut filter is absent. 
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Notice the large off-diagonal terms – having magnitudes up to 0.7 – 
and fairly large negative terms. 

Figure 7.9 shows the result of mapping the ColorChecker patches 
through the optimum matrix of Equation 7.4. Evidently the 
ColorChecker patches are mapped to chromaticity coordinates reason-
ably close to their ideal coordinates as shown in Figure 7.5. The 
optimum matrix for this particular camera yields an average error of 
about 5 ∆Eab. (Keep in mind that these 2-D representations do not 
portray the errors in mapping of luminance levels.) 

Refinements 

I have outlined the pseudoinverse technique. Many refinements of this 
technique can be, and are, used in computing optimum linear 3×3 
matrices. I’ll briefly outline a few refinements and alternate 
approaches: 

Finlayson, Graham D. and Drew, 
Mark S., “White-point preserving 
color correction,” in Proc. IS&T/SID 
5th Color Imaging Conference 
(Scottsdale, Ariz., Nov. 1997): 258–
261. 

 • It may be important that the grayscale maps correctly. Correct 
mapping of grays includes white, of course. The refinement, detailed 
by Finlayson and Drew, is called white point preserving least-squares 
(WPPLS). 
 • The principal eigenvectors (PE) method, also known as truncated 
SVD, involves discarding from the “training set” those elements that 
are determined, from the mathematical procedure, not to contribute 
significantly to the estimated matrix coefficients. Such samples are 
discarded because they are likely to contribute noise. 
 • The least-squares weighting can be weighted according to colors for 
which it is especially important to maintain accuracy. For example, the 
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Figure 7.9 Corrected device 
values, after mapping through 
an optimum 3×3 matrix, are 
graphed here. The chromaticity 
values are reasonably close to 
those of Figure 7.5. 
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least-squares solution can be weighted to emphasize accurate 
mapping of skin tones. (Other colors will necessarily suffer.) 
 • I have described using a real-life optical stimulus – the 
ColorChecker. If actual spectral responsivity data (SRFs) of the camera 
is available, the calculations can be done synthetically. 

Holm, Jack, “Capture Color Analysis 
Gamuts,” in Proc. IS&T/SID 14th 
Color Imaging Conference (Scottsdale, 
Ariz., Nov. 2006): 108–113. 

 • If actual SRFs are available, a synthetic analysis can be performed 
on monochromatic spectral stimuli instead of the ColorChecker. Think 
of this approach as using 31 test stimuli (31 “patches”), where each 
stimulus contains power at a single wavelength. This approach is 
mathematically equivalent to finding the 3×3 matrix that best 
matches, in a least-squares sense, the ideal CMFs for the intended 
image encoding primaries. (For example, if targeting BT.709, the tech-
nique finds the linear combination of native device SRFs that best 
matches Figure 7.7.) Some researchers argue that using monochro-
matic stimuli ought to give better performance: According to their 
view, optimization performed at the spectral boundary ought to better 
constrain color mappings within the entirety of colorspace. Other 
researchers argue that true spectral (monochromatic) stimuli will never 
be encountered in actual use of the camera, and that it is more impor-
tant to optimize for realistic stimuli. (I tend toward the latter view.) In 
the limit, in situ scene-dependent illumination SPDs and spectral 
reflectances could be used. 
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Capture color analysis gamuts for a Canon 20D digital camera (LS matrix-black dots, WPPLS
matrix-green dots, RGB error minimization matrix-blue dots, DNG D65 matrix-red dots)

Figure 7.10 Capture color analysis gamut is illustrated in this 
sketch taken from Jack Holm’s paper cited on page 41. 
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Bastani, Behnam, et al., “Optimal 
Linear RGB-to-XYZ Mapping for 
Color Display Calibration,” in Proc. 
IS&T/SID 12th Color Imaging Confer-
ence (Scottsdale, Ariz., Nov. 2004): 
223–227. This paper concerns 
displays, but the technique is also 
applicable to cameras. 

 • The procedure that I have described implies that the error being 
minimized is what you might denote ∆XYZ or ∆RGB, in linear-light 
space. It may be more appropriate to minimize a more perceptual 
error metric such as ∆Eab (that is, an error measured in CIELAB). 
Delta-E is a nonlinear function of XYZ (or RGB), so a nonlinear opti-
mizer is necessary. The Nelder-Mead technique (implemented in 
Excel’s Solver, matlab’s fminsearch, and Mathematica’s NMinimize) 
could be used. 
 • Finally, error minimization could be performed in a color appear-
ance space such as CIECAM02 Jab. 

Wide-gamut capture 

I can now summarize my conclusions concerning color capture: 
 • Metamerism should not be confounded with capture gamut. 
There’s no such thing as capture gamut. 
 • Camera metamerism will be present to the extent that the sensor 
SRFs depart from the CIE CMFs. 
 • Any set of SRFs captures all colors. A camera sensor per se does not 
limit capture gamut: Even a three-component camera potentially has 
unlimited gamut. 
 • Clipping in the camera’s signal processing – for example, following 
3×3 linear matrixing into interchange primaries – can impose a gamut 
limit. 
 • For reasonably well-controlled illuminant spectra (as is typical of 
professional image capture), and absent any pathological spectral 
reflectances in the scene, metamerism is not a serious problem. 
 • Color mapping accuracy is dependent upon the camera SRFs, and is 
influenced by illumination spectra and spectral reflectance of scene 
elements.  


